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ABSTRACT 

Mission design and analysis present challenges in that 
almost all variables are in constant flux, yet the goal is 
to achieve an acceptable level of performance against a 
concept of operations, which might also be in flux. To 
increase responsiveness, our approach is to use 
automated planning tools that allow for the continual 
modification of spacecraft, ground system, staffing, and 
concept of operations while returning metrics that are 
important to mission evaluation, such as area covered, 
peak memory usage, and peak data throughput. We have 
applied this approach to DESDynI (Deformation, 
Ecosystem Structure, and Dynamics of Ice) mission 
design concept using the CLASP (Compressed Large-
scale Activity Scheduler/Planner) planning system [7], 
but since this adaptation many techniques have changed 
under the hood for CLASP and the DESDynI mission 
concept has undergone drastic changes, including that it 
has been renamed the Earth Radar Mission. Over the 
past two years, we have run more than fifty simulations 
with the CLASP-DESDynI adaptation, simulating 
different mission scenarios with changing parameters 
including targets, swaths, instrument modes, and data 
and downlink rates. We describe the evolution of 
simulations through the DESDynI MCR (Mission 
Concept Review) and afterwards. 
 
1. INTRODUCTION 

As mission designs evolve, some form of mission 
evaluation is necessary to determine how much science 
could be done with a given mission design. Historically, 
such evaluation was approximated, in the end leading to 
either missions that were very simple that could have 
done more or missions that promised too much. 
Generating high-fidelity mission plans is costly, yet a 
complete mission plan is the only real artifact that can 
be defended both from a scientific point of view and an 
engineering point of view. Enter automated planning 
and scheduling. Previously, we have reported on using 
CLASP to generate high-fidelity mission plans that can 
be evaluated by both scientists and engineers. But, new 
changes have forced us to increase the capability of 
CLASP to handle new challenges in the DESDynI 
domain. 
 
First, we describe our history with CLASP and the 

DESDynI concept. We characterize the types of 
analyses needed for mission design evaluation and some 
of our iterations providing these analyses. 
 
Then, we describe in detail the specific adaptation of 
CLASP proposed for DESDynI, including duty cycle, 
memory, downlink rates and visibilities, target sets and 
coverage requirements, and throughput limits. We then 
detail the way that CLASP uses the adaptation and 
instance information to produce a schedule. 
 
CLASP can compress problems when they get too large 
for memory at a cost in terms of execution time, but we 
have discovered that this capability is largely 
unnecessary in that proper parameterization of the 
problem can keep it from becoming too large, even for 
huge campaigns spanning months or years, but planning 
at single second resolution. We describe the techniques 
we use to avoid filling memory, including sequencing of 
target sets (certain schedules can be planned, with 
subsequent schedules being interleaved into the 
previously scheduled observation plans), and choice of 
spatial decomposition parameters. 
 
There are different ways in which CLASP can 
decompose spatial representations, from decomposing 
the globe into pixels of fixed size to using polygon 
representations of arbitrary resolution aka shards. Each 
of these has advantages and disadvantages, and we 
discuss the results of using these techniques in the 
context of the DESDynI mission concept. Finally, the 
overarching search algorithm of CLASP is described in 
detail using the DESDynI mission design as our 
example domain. We describe the decomposition of the 
possible visibilities and requested target sets into pixels 
or shards, and how this representation gives us access to 
information at runtime at constant-time speed. We 
describe how squeaky-wheel optimization works, 
including our techniques of conformant synergistic 
scheduling, where targets are added to observations 
where we can prove that no priority inversion is taking 
place for the target. 
 
2. The DESDynI Concept 

The objectives of the proposed DESDynI mission 
concept are to "determine the likelihood of earthquakes, 
volcanic eruptions, and landslides, predict the response 



 

of ice sheets to climate change and impact on the sea 
level, characterize the effects of changing climate and 
land use on species habitats and carbon budget, [and] 
monitor the migration of fluids associated with 
hydrocarbon production and groundwater resources." 
[4] This is accomplished using an L-band RADAR with 
multiple polarizations. Further details about the 
DESDynI concept can be found on either the mission's 
web-site [4] or from the various IEEE Geoscience and 
Remote Sensing Symposia [5][9]. 
 
2.1. Simulation Background 

The DESDynI simulations have been a long-running 
iterative process influencing the design of the proposed 
DESDynI mission, the development of CLASP, and 
further simulations that are run.  Each simulation run 
with CLASP answers some questions about 
performance as it creates new ones. Additionally, some 
simulations generate requests for more output from 
CLASP or for new features in scheduling, and adding 
these to the CLASP core creates new possibilities for 
future simulations. 
 
Most DESDynI simulations cover one quarter or 
“season” of a year (roughly 90 days in length).  Each 
quarter is divided into equal-length cycles. There would 
be three major campaigns of interest in the DESDynI 
mission concept, with several subgroupings: ice (further 
divided into sea ice, land ice, and high-priority ice), 
vegetation (leaf on, leaf off, dry, wet), and land (global 
strain rate, anthropogenic deformation, and volcanic).  
Many of these campaigns would require one or more 
observations per cycle; some would require only one 
observation during an entire season.  Some campaigns 
would require multiple looks (observations on both 
ascending and descending passes) to be satisfied.  
Finally, the target areas for campaigns would vary by 
quarter; sea ice targets change every quarter, and 
vegetation targets are most extensive in summer-time, 
when they cover most land in the northern hemisphere.  
For this reason summer quarters tend to be the most 
difficult to schedule while meeting science goals. 
 
There are three major instrument modes used in the 
simulations: SP (single pol, required for most ice and 
land targets), LBSP (low-bandwidth single pol, suitable 
for sea ice and some land targets), and QP (quad- pol, 
usually required for vegetation targets).  Quad-pol is the 
most data-intensive of these modes, often requiring 
more than 2 Gbps to take, with the narrowest swath, 
while LBSP has the lowest data requirements and the 
widest swath.  Many simulations explore the use of 
additional modes (like QQP or “quasi-quad- pol”) to 
meet science goals, and most define a hierarchy where 
higher data rate modes can satisfy lower modes.  
Simulations also define swaths of varying sizes.  Early 
DESDynI simulations created QP observations on the 

narrowest swath, and LBSP/SP observations on wider 
swaths.  In later simulations, the size differences 
between swaths became much smaller, and only the 
narrowest swath was used. 
 
The goal of each simulation is to model the science goal 
satisfaction achievable by a particular DESDynI mission 
configuration, expressed as the percentage of targets 
satisfied both overall and within each campaign.  Each 
simulation can vary a variety of parameters, including: 
• Target sets and observation requirements (frequency 

and look requirements) 
• Quarter and cycle length 
• Swath sizes and temporal resolutions (60 second, 15 

second, or 5 second segments).  Observation 
resolution is the same as swath resolution. 

• Instrument modes, data rates, and 
domination/satisfaction hierarchy 

• Downlink rates and schedules 
• Campaign priority 
• Onboard recorder size and initial memory usage 
 
2.2. Evolution of Simulations 

Early CLASP simulations for the DESDynI mission 
concept used simple swaths and ample downlinks.  
They began with 90 and 180 km swaths, for QP and SP 
modes, divided into 60-second segments.  45 minutes of 
downlink time was scheduled per orbit at 1000 Mbps.  
In most simulations this level of downlink is a dream 
scenario, used to model an “unconstrained” case to test 
what the spacecraft could capture without memory 
constraints. Early simulations allowed the spacecraft to 
alternate between left and right rolled modes as needed 
to capture targets.  Six 16-day cycles were simulated. 
 
After these simple beginnings, more realistic swaths and 
stingier downlinks were introduced.  Requirements for 
switching between left and right rolls were dropped, and 
simulations stuck to using right-rolled swaths only. We 
simulated scenarios to prepare for a meeting with 
DESDynI scientists in October 2010.  These scenarios 
experimented with juggling priorities of campaigns in 
different cycles, in an attempt to force certain 
requirements to be met.  The new swaths were between 
226 (QP) – 248 (LBSP) kilometers wide. Three 
downlink scenarios were considered: a “minimum 
mission” consisting of a limited schedule of 130 Mbps 
downlinks using the Near Earth Network (NEN), a 
“basic” schedule providing 300 Mbps from the Tracking 
and Data Relay Satellite System (TDRSS) at 2 x 12 
minutes per orbit, and an “unconstrained” schedule of 
1000 Mbps at 45 minutes per orbit.  The minimum 
mission scenario allowed only 17% total target 
coverage, the basic configuration allowed 68% 
coverage, and the unconstrained case captured 98% of 
all targets.  A more detailed breakdown of target 
coverage by discipline is shown in Tab. 1. Recorder 



 

usage for the unconstrained mission is shown in Fig. 1; 
memory usage remains low for most of the simulation, 
as data is drained off by downlinks faster than it is 
acquired. 
 

Campaign Coverage, 
130 Mbps 

Coverage, 
300 Mbps, 
2 x 12 mins 
/ orbit 

Coverage, 
1000 
Mbps, 45 
minutes / 
orbit 

Deformation 17.9 70.1 99.2 

Ice 11.8 63.2 94.1 

Vegetation 27.4 71.6 100.0 

Overall 16.9 68.2 97.8 

Table 1. Target coverage for various downlink scenarios 

 
Figure 1. Recorder usage at 1 Gbps downlink, 45 min. 

per orbit 

New simulations were requested to explore the 
possibility of meeting science goals with the 300 Mbps 
TDRSS option, without significantly increasing the 
amount of downlink available.  An important element of 
the new simulations was the adoption of 15 second 
swath resolution, as opposed to 60 seconds in earlier 
simulations.  Sixty second observations are long 
(covering more than 400 kilometers of arc on the 
surface, assuming a 7 km/s ground speed).  Targets can 
be captured more efficiently with shorter observations, 
reducing the likelihood that observation time and 
memory are wasted on areas with no targets of interest.  
The downside to this approach is that scientists prefer to 
see contiguous observations, rather than seeing the 
instrument repeatedly turn on and off in short spurts. 
There is interest in making CLASP output more 
contiguous observations instead of frequently turning 
the instrument on and off, but this requirement is still 
ill-defined. By adopting fifteen-second swath segments, 
slightly increasing available downlink to 300Mbps at to 
2 x 15 minutes per orbit, and dropping priority 
requirements on campaigns, target coverage improved 
to 97% overall, compared to the 68% coverage for the 
original basic scenario. Target coverage for this case is 
shown in Tab. 2. Memory usage is shown in Fig. 2. The 
usage is highest in the earlier cycles of the simulation, 

and drops off once targets that only need to be visited 
once have been scheduled. 
 

Campaign Coverage, 
Revised 
“basic” case 

Deformation ‐ Anthropogenic  100.0 

Deformation – Global strain rate  99.5 

Deformation ‐ Landslides  100.0 

Deformation – Volcano on land  99.8 

Ice – High priority areas  99.8 

Ice ‐ Land  99.3 

Ice ‐ Sea  87.5 

Vegetation  99.8 

Overall  96.6 

Table 2. Target coverage for basic case with 300 Mbps 
downlink rate. 

 
Figure 2. Recorder usage for case with 300 Mbps 

downlink rate. 

The next set of simulations we ran incorporated new 
information from the Science team meeting to evaluate 
proposed DESDynI mission scenarios for the Mission 
Concept Review in January 2011. One of the 
realizations coming out of the meeting was that 
vegetation targets needed to be observed in both 
ascending and descending passes, sometimes more than 
once per season, to get adequate data. To meet these 
requirements, we began implementing an ability for 
CLASP to schedule targets that required multiple 
constraints (e.g. both ascending and descending passes) 
to be satisfied. Additionally, since swath widths were 
now very similar and differed by less than 25 km, we 
began running simulations using only the narrowest 
swath for all observations.  This avoided the problem 
that CLASP does not upgrade an existing observation to 
a higher-data rate mode when doing so requires the 
upgraded observation to use a narrower swath (possibly 
uncovering some previously-satisfied targets). 
 
Vegetation targets covered large areas and required the 
highest data-rate modes to observe, so either the amount 
of downlink available had to increase, or new schemes 
had to be tested for capturing vegetation targets.  Thus a 
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new QQP (“quasi-quad pol”) mode was introduced for 
imaging vegetation targets.  This mode used a lower 
data rate than quad pol, but required three pairs of 
ascending and descending observations per quarter to 
meet science objectives. For the MCR, we simulated a 
configuration where the TDRSS downlink time was 
upped to 45 minutes per orbit at 300 Mbps. Even with 
the increased downlink time, our simulation showed that 
only 89% of the vegetation targets could be satisfied 
during the July-September quarter, when these targets 
were most extensive in land area. Tab. 3 shows the 
target coverage for this case. Fig. 3 is a profile showing 
onboard recorder usage during the course of the 
simulation. Memory usage peaks at the maximum of 4 
Tb and tends to fall back towards zero between each 13-
day cycle. This pattern appears because many targets 
need to be scheduled within a specific cycle. 
 

Discipline Coverage (MCR) 
Deformation ‐ Anthropogenic  100.0 
Deformation  –  Global  strain 
rate 

100.0 

Deformation – Landslides  99.8 
Deformation  –  Volcano  on 
land 

100.0 

Ice – High priority areas  100.0 
Ice ‐ Land  100.0 
Ice ‐ Sea  89.0 
Vegetation  88.9 
Overall  96.1 

Table 3. MCR Simulation target coverage 

 
Figure 3. Memory profile for MCR simulation 

After a successful MCR, DESDynI’s budget was cut in 
Feburary 2011 and most work was put on hold.  More 
recent CLASP simulations have explored cooperation 
with third parties, and tradeoffs between radar 
performance and cost.  These simulations have run a 
variety of scenarios, including the use of two spacecraft 
to capture observations, and the use of a SpaceX Dragon 
capsule to serve as a platform for carrying the radar 
instrument, and collaborations with the Indian Space 

Research Organization and Canadian Space Agency. 
 
One of the outcomes of these simulations is that they 
suggest new improvements to make for CLASP. As 
noted earlier, it is desirable for the CLASP-DESDynI 
adaptation to prefer creating contiguous observations 
instead of frequently starting and stopping instruments. 
Simulations for mission scenarios using multiple 
spacecraft also revealed a desire for spacecraft flying in 
tandem to observe a target using single-pass 
interferometry. We are also working continuously on 
improving CLASP performance, with the goal of 
initializing a simulation and performing multiple 
optimization iterations within 30 minutes. 
 
3. CLASP 

CLASP decomposes the geometric and temporal 
coverage problem into a set coverage problem, and then 
employs priority-based optimization to improve the 
schedule iteratively. First, we cover the encoding of the 
problem domain and describe the inputs to CLASP. 
Then, we describe how these inputs are transformed into 
a set scheduling problem (with a great deal of side 
constraints). We cover the choice between the pixel 
representation and the polygon or shard representation. 
Finally, we describe how we iterate over the creation of 
various schedules, changing the weights given to each 
target component (pixel or shard) and resorting and 
rescheduling, until we either cannot improve the 
schedule or we reach the end of our resources. 
 
3.1. Inputs to CLASP 

Fundamentally, CLASP is a coverage scheduler. That is, 
its role is to produce a list of time-stamped 
configurations for a spacecraft or aircraft (or collection 
of spacecraft or aircraft) that results in covering as much 
of the given target set as possible.  
 
Inputs to CLASP describe 1) resources: the capacity, 
initial value, and constraints on resources available 
(memory, power, duty cycle), 2) instruments: what 
modes are available, what modes “dominate” or can 
substitute for other modes, the orbital characterization 
of the spacecraft or aircraft, and limits on slewing and 
footprint of the instrument, and what resource effects 
(data rate, power rates, etc) are associated with each 
mode, and 3) targets: what areas are we to collect data 
on, how many observations are necessary, what angles 
and “node” (ascending or descending) are required, and 
what are the temporal requirements. 
 
Before going into detail about resources, instruments, 
and targets, a fundamental decision must be made by the 
user of CLASP as to which underlying representation 
we wish to use: pixels or shards. Pixels allow for fast 
computation at the cost of fidelity, shards allow for 
arbitrarily high fidelity at a cost of speed (in most 



 

cases). 
 
Pixels: when we pixelate the target body (Earth, Mars, 
etc.), we produce a cartographic graph over the surface 
of the body. The graph consists of cells along latitude 
and longitude boundaries (with the exception of the 
poles, where the graph cell is singleton and circular). 
The size of the shortest edge of the graph is a constant 
value for any latitude. The value is computed by 
dividing the latitude by the baseline cell size and 
rounding, thus the cells are guaranteed to be at least the 
size of a square where each side is of the baseline cell 
size. This cell size determines how many pixels cover 
the planet. Fig. 4 shows a comparison of two different 
pixel sizes. 
 
Each pixel is then used as an individual component of 
area for both sensor-swaths and targets.  
 

 
Figure 4. Japan with varying size pixels. 

 
Figure 5. Japan coverage solution with pixels and 

shards. 

 
Shards: shards are the smallest polygons that are 
induced by all of the lines representing sensor-swaths 
and targets. Each shard consists of a unique membership 
of overlapping swath-segments and targets. Shards have 
arbitrary resolution (almost, they are implemented using 
c++ doubles, so the resolution on Earth in radians is 
limited to less than a foot when values near π [at the 
anti-meridian], which is well within epsilon for any of 
our purposes). Fig. 5 shows a comparison of coverage 
solutions using pixels and shards. 
 
Both shards and pixels represent areas that are covered 
by a set of sensors and a set of targets. The trade-off 
between these different representations has to do with 
the scale of the task at hand, the temporal resolution of 
the sensor-swaths, and the size and complexity of the 
target set. Small target sets with narrow swaths (e.g., 
aircraft flight plans) run much faster using shard 
representations than using high-density pixel 
representations. On the other hand, large target sets with 
wide sensor-swaths often run much faster using pixel 
representations. There is no hard and fast rule, so we 
leave such choices up to the user. 
 
Henceforth, we will not refer to shards or pixels, but 
simply cells to represent the collection of areas that can 
be sensed and are requested to be collected. 
 
Resources: in general, CLASP has the ability to 
characterize resources that fall into the integrating-
value-over-time model. All of CLASP’s resource 
reasoning is based on this model. The resource is 
modelled as a value over time (usually a c++ double, 
but other types are available). Constraints are levied on 
the resource in the form of rates over time. The resource 
has both rate and integrated value limits. Clamps can 
also be assigned to the upper or lower value of a 
resource rate or integrated value. This is useful for 
modelling resources such as memory, where a downlink 
that has emptied memory halfway through (the duration 
of the downlink) does not bring memory into the 
negative-fill but instead simply stops at empty (and also 
does not violate the limits of the resource). Time to 
propagate these timelines is linear in the number of 
individual time segments that it represents, and short-
circuiting does occur, e.g., when a value has reached its 
clamped limit. 
 
Hooks are available to provide CLASP resources of 
arbitrary semantics, but these must be implemented by 
the adaptor. 
 
Instruments: one can think of instruments in CLASP as 
the marriage between resources and targets. Instrument 
definition starts with the concept of the sensor. Each 
sensor provides CLASP with an area over time that is 
visible from the spacecraft or aircraft. These can be 



 

discretely described (in other words, each sensor can 
represent a slew angle of the spacecraft) or can be 
described using ranges (in other words, a sensor can 
indicate a left or right look angle from the spacecraft, 
with a slew angle and field of view prescribed). Sensors 
can be pre-processed and simply indicate time-stamped 
areas or can be described using SPICE [1] kernels and 
simple instrument models. Sensors also equate to swaths 
(areas on the surface to be imaged), and each discrete 
interval that a sensor covers is a swath segment. Thus, a 
swath-segment is a sensor field of view at a specific 
time for a specific duration. Each swath segment is 
mapped to the cells, which are in turn mapped back to 
the swath segment. 
 
For example, imagine a spacecraft that can roll left or 
right, and images in a push-broom manner. We might 
provide CLASP a sensor definition in the form of a file 
containing a series of left-looking inner and outer 
coordinates with timestamps for the left swath and then 
label that sensor 1. We would provide a similar file for 
the right swath and label that sensor 2. The node 
(whether or not a sensor area at a certain is during the 
ascending node or descending node of the orbit of the 
spacecraft) is automatically computed. 
 
Once a sensor is described and assigned its unique id, 
this id can be mapped to a mode. This allows us to 
indicate that various instrument modes can image only 
specific areas.  Extending our previous example, sensor 
1 could be assigned high_resolution_left and 
low_resolution_left and sensor 2 could be assigned to 
both high_resolution_right and low_resolution_right 
modes. Note that we only schedule modes that are 
associated directly with a sensor. 
 
Modes need not be directly assigned to sensors. Modes 
can be abstract and only exist to be dominated. The 
domination hierarchy of modes indicates which modes 
can be used in substitution of other modes. A mode 
dominates another when it can substitute it. This allows 
us to model cases such as high fidelity modes that 
satisfy low fidelity target requests, but low fidelity 
modes not satisfying high fidelity target requests. 
Extending our previous example, we would indicate that 
both high_resolution_left and high_resolution_right 
dominates high_resolution  and we would indicate that 
low_resolution_left and low_resolution_right dominate 
low_resolution, but not vice versa. We would also 
indicate that high_resolution dominates low_resolution. 
To speed dominance checking, the transitive closure is 
computed on the dominance graph, the result of which 
is used to determine dominance during scheduling. This 
results in a O(logn) time to compute dominance where n 
is the number of dominance relationships. 
 
Modes are also assigned resource usage. For example, 
one mode might produce more data than another. Any 

number of resource effects can be assigned to a mode. 
Extending our example, we would indicate that 
high_resolution mode uses memory at a rate of 1Gbps, 
but low_resolution mode uses memory only at 1Mbps. 
 
Minimum transition duration requirements can also be 
assigned to modes. This allows us to model the time it 
takes to transition from one mode to the next. For 
example, if it takes no time to switch between high and 
low resolution, but it takes 1 minute to slew the 
spacecraft, we would indicate that the transition 
between high_resolution_left and low_resolution_left is 
0 seconds, but that the transition between 
high_resolution_left and high_resolution_right is 60 
seconds. Transition constraints are only defined for 
sensor-level modes (not abstract modes). 
 
Targets: targets are described using maps of areas 
(primarily using GoogleEarth KML files). Targets may 
be polygons or points. Each target includes a campaign 
statement that describes what is required to image the 
target. The campaign statement includes the mode 
(sensor-level or abstract) priority, how many times the 
target must be collected, the constraints on look angle 
(left and right) and node (ascending or descending). 
Temporal constraints can be described for observations, 
including disjunctive intervals. 
 
3.2. Transforming the Targets 

Targets and swath segments are all eventually assigned 
to a set of cells (pixels or shards). The individual cells 
are the smallest component of area CLASP reasons 
about. Targets are broken down into a set of cell-targets. 
These cell-targets are what are scheduled by the 
scheduling engine. Each cell-target consists of a set of 
constraints that must be met (priority, look angle, node, 
mode, etc.) and a scheduling priority (not to be confused 
with target priority).  
 
3.3. Iterative scheduling 

The task at hand is to assign modes over time that 
maximize our coverage objective. Our approach is to 
use squeaky-wheel optimization to schedule the cell-
targets. Squeaky-wheel optimization (SWO) [5] has two 
pre-requisites: 1) each task to be scheduled has a 
scheduler priority that is modified during optimization 
and 2) a greedy scheduler exists that can schedule the 
tasks according to this priority. SWO is used primarily 
when the goal is to schedule as many tasks as possible 
with the assumption that we have more tasks than 
capacity. SWO terminates when all tasks have been 
scheduled or when a time bound is exceeded. During 
our outline of the scheduling algorithm we will see that 
we have modified SWO in several different ways. 
 
The first step then is to initialize the scheduler priority 
for each cell-target. Each is assigned a scheduler-



 

priority of 0. 
 
Then, at each iteration, we order the cell-targets by 
priority (in ascending order), scheduler priority (in 
descending order), then by the earliest visibility, and 
then randomly. Here we see that CLASP is a strict 
priority order scheduler, i.e., no number of lower 
priority tasks can pre-empt a higher priority task. Thus, 
the first time through the loop, we are scheduling in 
temporal order. 
 
So, for each cell-target, we find the first possible 
scheduling that violates no constraints, where 
scheduling means assignment to a swath segment and 
sensor-level mode. It should be noted that swath 
segments are considered mutually exclusive. Some 
targets are expressed as constraint pairs, so in that case 
we must find a scheduling that satisfies both sets of 
constraints. Once a time is found, the cell-target is 
assigned to that time. Determining visibility is very fast 
(constant time) as the cell-target maintains a reference 
to the cell, which has a reference to the sensors that 
cover that cell. In the case that a sensor is continuously 
adjustable, we simply check to see if the width of the 
current range of included cells plus the cell-target is 
covered by the field of view of the instrument. This is a 
least-commitment strategy that allows us to avoid 
painting ourselves into a corner with respect to choosing 
pointing angles for the sensor. 
 
Note that determining whether or not a cell-target can 
be assigned at a time is not a simple matter of checking 
the visibility. If a mode is already active over the 
interval, then we need to see if that mode is compatible 
with or could be upgraded to a mode that dominates the 
requested cell-target mode and the current active mode. 
If a mode is not already active over the interval, then we 
need to find the "closest" mode that can be 
accommodated by the resources, dominates or is 
equivalent to the cell-target mode, and violates no 
transition duration constraints. The most costly of these 
checks are checks against resources. 
 
When we set a new mode over an interval, we are 
assigning a mode to a swath segment. At this time, we 
perform synergistic scheduling: scheduling all other 
cell-targets that can be scheduled during this sensor. 
First, we find the swath segment associated with this 
cell-target. This requires no time as it is maintained as a 
by-product of determining that this cell-target can be 
scheduled in the first place, although the original cost of 
finding this is still constant time through references to 
the cell. Once we have a sensor, we can then loop 
through all cells associated with that sensor and loop 
through all cell-targets associated with each cell. We 
check for compatibility. We disallow changing modes 
as this leads to priority inversion. We also disallow 
expanding the width of the current field of view for 

continuous sensors for the same reason. We schedule 
(assign to this swath segment) all cell-targets that are 
compatible. We disallow scheduling of pair-observation 
targets as empirically we have determined that a 
decrease in performance is realized as previous results 
of checking one half of the pair are not cached for future 
evaluation. 
 
After generating each schedule, we evaluate how well 
we did based on the area covered. In the case of pixel 
representations, we simply use the count. In the case of 
shard representations, we use the sum of the area. We 
keep a log of our performance and short-circuit when a 
long enough cycle of stagnant performance is detected.  
 
Cell-targets that are not scheduled during this round 
have their scheduler priority increased, i.e., the squeaky 
wheel gets the grease. For previous versions, we kept 
track of the highest quality schedule that each cell-target 
participated in. This allowed us to find poison targets 
that, when introduced into a schedule, forced the overall 
quality of the schedule to be exceedingly low. We then 
could remove the targets and stop them from dragging 
down the overall quality of our search (basically 
resulting in filling the valleys), i.e., the squeaky wheel 
gets greased. But, for large problem instances, we 
discovered that no individual cell-target was poisonous, 
thus this optimization actually reduces the overall 
performance due to the slight increase in resources 
required to track it. 
 
3.4. Pseudo code 

Here we present some pseudo code to help make more 
concrete our algorithms. 
 
Collect Shards 

(1) let S be the set of swath segments 
(2) let T be the set of targets 
(3) let E be a set of edges 
(4) let C be the resultant set of polygons (the 

shards) 
(5) for each s  S, for each e  s.edges 
(6)     add e to E 
(7) end for, end for 
(8) for each t  T, for each e  t.edges 
(9)     add e to E 
(10) end for, end for 
(11) while  e  E, e'  E | e ≠ e' and e intersects e' 

and the intersection is not at either end of e 
(12)     remove e from E 
(13)     split e into two edges at the intersection 

point and reinsert both into E 
(14) end while 
(15) while |E| > 0 
(16)     e = E.pop 
(17)     if e is not vertical 
(18)         let p be a new polygon where e is a 



 

southern edge 
(19)         let e' = e 
(20)         do 
(21)             add e' to p.edges 
(22)             let e' be the next edge adjacent to e 

following a clockwise motion 
(23)             if e'  is a southern edge of p 
(24)                 remove e' from E 
(25)             end if 
(26)         until e' = e 
(27)         add p to C 
(28)     end if 
(29) end while 

 
Schedule 

(1) let C be the set of cell-targets 
(2) let S be a set of (mode, swath-segment) 
(3) let F be the set of failed cell-targets 
(4) do 
(5)     let F = {} 
(6)     sort C according to scheduler priority 
(7)     for each c  C 
(8)         if we find a mode m and swath segment s | 

(m, s) satisfies c 
(9)             add (m, s) to S 
(10)             for each c' in S.cell.cell-targets 
(11)                 if (m, s) satisfies c' 
(12)                     remove c' from C 
(13)                 end if 
(14)             end for 
(15)         else 
(16)             add c to F 
(17)         end if 
(18)     end for 
(19)     for each c  F 
(20)         increment c.scheduler-priority 
(21)     end for 
(22) until |F| = 0 or we have no more time 

 
3.5. Other Adaptations of CLASP 

Other adaptations/applications of CLASP to spacecraft 
scheduling include the THEMIS prototype [8] and 
scheduling for the proposed HyspIRI IPM [3]. It has 
also been baselined as the IPE CubeSat ground system 
[2]. 
 
This research was carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, under a 
contract with the National Aeronautics and Space 
Administration. Copyright 2012 California Institute of 
Technology. Government sponsorship acknowledged. 
 
4. REFERENCES 

[1] Acton, C., Backman, N., Elson, L., Semenov, B., 
Turner, F., Wright, E., “Extending NASA’s SPICE 
ancillary information system to meet future mission 
needs,” SpaceOps 2002, Houston, Texas, October 

2002. 

[2] S. Chien, J. Doubleday, K. Ortega, T. Flatley, G. 
Crum, A. Geist, M. Lin, A. Williams, J. Bellardo, J. 
Puig-Suari, E. Stanton, E. Yee, “Onboard 
Processing and Autonomous Operations on the 
IPEX Cubesat Mission,” Government Cubesat 
Symposium, Moffett Field, CA, April 2012. 

[3] S. Chien, D. Silverman, G. Rabideau, D. Mandl, J. 
Hengemihle, “A Direct Broadcast Operations 
Concept for the HyspIRI Mission,” Space 
Operations 2010, Huntsville, AL, April 2010. 

[4] “DESDynI”, http://desdyni.jpl.nasa.gov 

[5] Donnellan, A., Rosen, P., Ranson, K.J., Zebker, H., 
"Deformation, Ecosystem Structure, and Dynamics 
of Ice (DESDynI)," IGARSS 2008, Boston, 
Massachusetts, July 2008. 

[6] Joslin, D. E., and Clements, D. P., “Squeaky wheel 
optimization,” J. Artif. Intell. Res., vol. 10, pp. 353–
373, 1999 

[7] Knight, R., Hu, S., “Compressed Large-scale 
Activity Scheduling and Planning (CLASP) applied 
to DESDynI,” Proceedings of the Sixth 
International Workshop in Planning and Scheduling 
for Space, Pasadena, CA, July 2009. 

[8] G. Rabideau, S. Chien, D. Mclaren, R. Knight, S. 
Anwar, G. Mehall, “A Tool for Scheduling 
THEMIS Observations, International Symposium 
on Space Artificial Intelligence, Robotics, and 
Automation for Space, Sapporo, Japan, August 
2010. 

[9] Rosen, P., Eisen, H., Shen, Y., Hensley, S. Shaffer, 
S., Veilleux, L, Ranson, J., Dress, A., Blair, B., 
Luthcke, S., Dubayah, R., Hager, B. H., "Making 
the most of DESDynI: An Overview of the 
Proposed Mission," IGARSS 2011, Vancouver, 
Canada, July 2011. 


